991 resultados para vertebral fracture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertebrplasty involved injecting cement into a fractured vertebra to provide stabilisation. There is clinical evidence to suggest however that vertebroplasty may be assocated with a higher risk of adjacent vertebral fracture; which may be due to the change in material properties of the post-procedure vertebra modifying the transmission of mechanical stresses to adjacent vertebrae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prevalence and risk factors of radiographic vertebral fracture were determined among Brazilian community-dwelling elderly. Vertebral fractures were a common condition in this elderly population, and lower hip bone mineral density was a significant risk factor for vertebral fractures in both genders. The aim of the study was to estimate the prevalence of radiographic vertebral fracture and investigate factors associated with this condition in Brazilian community-dwelling elderly. This cross-sectional study included 943 elderly subjects (561 women and 382 men) living in So Paulo, Brazil. Thoracic and lumbar spine radiographs were obtained, and vertebral fractures were evaluated using Genant`s semiquantitative method. Bone mineral density (BMD) was measured by dual X-ray absorptiometry, and bone biochemical markers were also evaluated. Female and male subjects were analyzed independently, and each gender was divided into two groups based on whether vertebral fractures were present. The prevalence of vertebral fracture was 27.5% (95% CI 23.8-31.1) in women and 31.8% in men (95% CI 27.1-36.5) (P = 0.116). Cox regression analyses using variables that were significant in the univariate analysis showed that age (prevalence ratio = 1.03, 95% CI 1.01-1.06; p = 0.019) and total femur BMD (PR = 0.27, 95% CI 0.08-0.98; p = 0.048) were independent factors in predicting vertebral fracture for the female group. In the male group, Cox regression analyses demonstrated that femoral neck BMD (PR = 0.26, 95% CI 0.07-0.98; p = 0.046) was an independent parameter in predicting vertebral fractures. Our results suggest that radiographic vertebral fractures are common in Brazilian community-dwelling elderly and that a low hip BMD was an important risk factor for this condition in both genders. Age was also significantly correlated with the presence of vertebral fractures in women.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

he aetiology of osteoporotic vertebral fractures is multi-factorial, and cannot be explained solely by low bone mass. After sustaining an initial vertebral fracture, the risk of subsequent fracture increases greatly. Examination of physiologic loads imposed on vertebral bodies may help to explain a mechanism underlying this fracture cascade. This study tested the hypothesis that model-derived segmental vertebral loading is greater in individuals who have sustained an osteoporotic vertebral fracture compared to those with osteoporosis and no history of fracture. Flexion moments, and compression and shear loads were calculated from T2 to L5 in 12 participants with fractures (66.4 ± 6.4 years, 162.2 ± 5.1 cm, 69.1 ± 11.2 kg) and 19 without fractures (62.9 ± 7.9 years, 158.3 ± 4.4 cm, 59.3 ± 8.9 kg) while standing. Static analysis was used to solve gravitational loads while muscle-derived forces were calculated using a detailed trunk muscle model driven by optimization with a cost function set to minimise muscle fatigue. Least squares regression was used to derive polynomial functions to describe normalised load profiles. Regression co-efficients were compared between groups to examine differences in loading profiles. Loading at the fractured level, and at one level above and below, were also compared between groups. The fracture group had significantly greater normalised compression (p = 0.0008) and shear force (p < 0.0001) profiles and a trend for a greater flexion moment profile. At the level of fracture, a significantly greater flexion moment (p = 0.001) and shear force (p < 0.001) was observed in the fracture group. A greater flexion moment (p = 0.003) and compression force (p = 0.007) one level below the fracture, and a greater flexion moment (p = 0.002) and shear force (p = 0.002) one level above the fracture was observed in the fracture group. The differences observed in multi-level spinal loading between the groups may explain a mechanism for increased risk of subsequent vertebral fractures. Interventions aimed at restoring vertebral morphology or reduce thoracic curvature may assist in normalising spine load profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this population-based study, we evaluated the association between exposure to hormone therapy (HT), bone mineral density (BMD) and the prevalence of non-vertebral fractures. The study was set in a region located in southeastern Australia where complete fracture ascertainment was determined from radiological reports. Current HT use for at least 6 months was ascertained in women with non-vertebral fractures [median age 70.9 years; inter-quartile range (IQR) 66.5–75.9 years] and randomly selected controls (median age 70.8 years; IQR 65.2–75.0 years). Current HT use was documented in 20 of 262 cases and 49 of 364 controls. The odds ratio (OR) for non-vertebral fracture associated with HT use was 0.53 (95% CI 0.31–0.92). HT use was associated with 2.6–7.5% higher BMD at axial and appendicular sites. HT use is associated with a halving of risk for non-vertebral fractures and higher BMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution quantitative computed tomography (HRQCT)-based analysis of spinal bone density and microstructure, finite element analysis (FEA), and DXA were used to investigate the vertebral bone status of men with glucocorticoid-induced osteoporosis (GIO). DXA of L1–L3 and total hip, QCT of L1–L3, and HRQCT of T12 were available for 73 men (54.6±14.0years) with GIO. Prevalent vertebral fracture status was evaluated on radiographs using a semi-quantitative (SQ) score (normal=0 to severe fracture=3), and the spinal deformity index (SDI) score (sum of SQ scores of T4 to L4 vertebrae). Thirty-one (42.4%) subjects had prevalent vertebral fractures. Cortical BMD (Ct.BMD) and thickness (Ct.Th), trabecular BMD (Tb.BMD), apparent trabecular bone volume fraction (app.BV/TV), and apparent trabecular separation (app.Tb.Sp) were analyzed by HRQCT. Stiffness and strength of T12 were computed by HRQCT-based nonlinear FEA for axial compression, anterior bending and axial torsion. In logistic regressions adjusted for age, glucocorticoid dose and osteoporosis treatment, Tb.BMD was most closely associated with vertebral fracture status (standardized odds ratio [sOR]: Tb.BMD T12: 4.05 [95% CI: 1.8–9.0], Tb.BMD L1–L3: 3.95 [1.8–8.9]). Strength divided by cross-sectional area for axial compression showed the most significant association with spine fracture status among FEA variables (2.56 [1.29–5.07]). SDI was best predicted by a microstructural model using Ct.Th and app.Tb.Sp (r2=0.57, p<0.001). Spinal or hip DXA measurements did not show significant associations with fracture status or severity. In this cross-sectional study of males with GIO, QCT, HRQCT-based measurements and FEA variables were superior to DXA in discriminating between patients of differing prevalent vertebral fracture status. A microstructural model combining aspects of cortical and trabecular bone reflected fracture severity most accurately.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Summary: Non-hip, non-vertebral fractures (NHNVF) were compared with hip, vertebral and controls. NHNVF were younger and heavier than controls and hip/vertebral fractures in both men and women, respectively. Falls and prior fractures were less common in NHNVF than hip fractures. Glucocorticoid use was lower in NHNVF compared to vertebral fracture (VF) in men. Introduction: Although hip fracture (HF) and vertebral fractures (VF) receive the most attention in the literature and are the targeted sites for fracture prevention, non-hip, non-vertebral fracture (NHNVF) sites account for a greater proportion of fractures than the hip or vertebrae. This study aimed to assess risk factors for NHNVF and compare them with those for HF, VF and controls. Methods: Incident fractures during 2005–2007 for men and 1994–1996 for women were identified using computerised keyword searches of radiological reports, and controls were selected at random from electoral rolls for participation in the Geelong Osteoporosis Study. Participants aged 60+ years were included in this study. Results: Compared to controls, men and women with NHNVF were younger (ORs, 0.90, 95 % CI 0.86–0.94; and 0.96, 0.93–0.98, respectively) and had a lower femoral neck bone mineral density (BMD) T-score (age-adjusted; difference [men] 0.383, P = 0.002; [women] 0.287, P = 0.001). Compared to HF, men and women with NHNVF were heavier (difference [men] 9.0 kg, P = 0.01; [women] 7.6 kg, P < 0.001). Heavier weight was also a risk factor for women with NHNVF compared to VF (1.03, 1.01–1.06). In men with NHNVF, falls (0.37, 0.14–0.97) and prior fractures (0.38, 0.15–0.98) were less common compared to HF; and glucocorticoid use was less common for NHNVF (0.30, 0.11–0.85) compared to VF. Conclusions: Given the high numbers of NHNVF sustained by men and women in this study, fracture prevention strategies should focus on individuals with high risk of sustaining these types of fractures, as well as on individuals who are more likely to sustain a HF or VF.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fractures applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged >55years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey-Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey-Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han-Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p<5×10-8. In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p=4.6×10-8. However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% CI: 0.98-1.14; p=0.17), displaying high degree of heterogeneity (I2=57%; Qhet p=0.0006). Under Han-Eskin alternative random effects model the summary effect was significant (p=0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size >1.25) may still be consistent with an effect size <1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vertebral fractures occur due to forces applied to spinal structures. When the bone tissue is weakened, vertebral fractures can result from a minor trauma. Adult vertebral fractures are commonly considered to be an indication for osteoporosis. In children osteoporosis is a rare condition, and pediatric vertebral fractures are usually clearly trauma-related. The aims of this dissertation are to produce knowledge of the epidemiology of osteoporotic vertebral fractures and to analyse their association with total and cause-specific mortality, to find indicators with which to identify individuals who are at great risk of subsequent fractures, to study the incidence of pediatric vertebral fractures and need for their operative treatment and hospital care. The Mobile-Clinic and Mini-Finland Health surveys of the adult population were used as materials in this research. Record linkages to the Finnish Hospital Discharge Register and the Official Cause of Death register were used to study mortality and hospitalization in the same population group. These registers were also used to evaluate epidemiology, mortality, hospitalization and the need for operative management of pediatric vertebral fracture patients. The main findings and conclusions of the present dissertation are: 1. The presence of a thoracic vertebral fracture in adults is a significant predictor of cancer and respiratory mortality. In women, but not in men, vertebral fractures strongly predict mortality due to injuries. Most of these deaths in the study group were hip fracture related. 2. Severe thoracic vertebral fracture in adults was a strong predictor of a subsequent hip fracture, whereas mild or moderate fractures and the number of compressed vertebrae were much weaker predictors, 3. Pediatric spinal fractures were rare: The incidence was 66 per one million children per year. In younger children cervical spine was most often affected, whereas in older children fractures of the thoracic and lumbar spine were more common. Maturation of spinal structures seems to play a major role in the typical injury patterns in children. Thirty per cent of pediatric spinal fractures required surgical treatment. The current study focuses on consequences of vertebral fractures in general, without evaluating further the causation of the studied phenomena. Further studies are needed to clarify the mechanisms of association between vertebral fractures and specific causes of mortality. A severe vertebral fracture appears to indicate a substantial risk of a subsequent hip fracture. If such a fracture is identified from a chest radiograph, urgent clinical evaluation, treatment of osteoporosis and protective measures against falls are recommended.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Vertebroplasty is a promising but as yet unproven treatment for painful osteoporotic vertebral fractures. It involves radiographic-guided injection of various types of bone cement directly into the vertebral fracture site. Uncontrolled studies and two controlled quasi-experimental before-after studies comparing volunteers who were offered treatment to those who refused it, have suggested an early benefit including rapid pain relief and improved function. Conversely, several uncontrolled studies and one of the controlled before-after studies have also suggested that vertebroplasty may increase the risk of subsequent vertebral fractures, particularly in vertebrae adjacent to treated levels or if cement leakage into the adjacent disc has occurred. As yet, there are no completed randomised controlled trials of vertebroplasty for osteoporotic vertebral fractures. The aims of this participant and outcome assessor-blinded randomised placebo-controlled trial are to i) determine the short-term efficacy and safety (3 months) of vertebroplasty for alleviating pain and improving function for painful osteoporotic vertebral fractures; and ii) determine its medium to longer-term efficacy and safety, particularly the risk of further fracture over 2 years.

Design: A double-blind randomised controlled trial of 200 participants with one or two recent painful osteoporotic vertebral fractures. Participants will be stratified by duration of symptoms (< and ≥ 6 weeks), gender and treating radiologist and randomly allocated to either the treatment or placebo. Outcomes will be assessed at baseline, 1 week, 1, 3, 6, 12 and 24 months. Outcome measures include overall, night and rest pain on 10 cm visual analogue scales, quality of life measured by the Assessment of Quality of Life, Osteoporosis Quality of Life and EQ-5D questionnaires; participant perceived recovery on a 7-point ordinal scale ranging from 'a great deal worse' to 'a great deal better'; disability measured by the Roland-Morris Disability Questionnaire; timed 'Up and Go' test; and adverse effects. The presence of new fractures will be assessed by radiographs of the thoracic and lumbar spine performed at 12 and 24 months.

Discussion:
The results of this trial will be of major international importance and findings will be immediately translatable into clinical practice.

Trial registration:
Australian Clinical Trial Register # [ACTRN012605000079640]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The epidemiology and sequelae of morphometric vertebral fracture (MVF) are poorly documented. We found that MVFs of the lower thoracic and lumbar spine were associated with poor quality of life and impaired physical function in men. We recommend that morphometric X-ray absorptiometry be included in routine requests for bone densitometry.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Summary: A randomised controlled trial of vertebroplasty (VP) versus placebo assessed the effect of VP on the risk of further vertebral fractures. While no statistically significant between-group differences for new or progressed fracture risk at 12 and 24 months were observed, we observed a consistent trend towards higher risk of any type of fracture in the group undergoing VP. Our analysis was underpowered, and further adequately powered studies are needed to be able to draw firm conclusions about further vertebral risk with vertebroplasty. Purpose: This study seeks to assess the effect of VP on the risk of further radiologically apparent vertebral fracture within two years of the procedure. Methods: We conducted a randomised placebo-controlled trial of VP in people with acute osteoporotic vertebral fracture. Eligible participants were randomly assigned to VP (n = 38) or placebo (n = 40). Cement volume and leakage were recorded for the VP group. Plain thoracolumbar radiographs were taken at baseline, 12 and 24 months. Two independent radiologists assessed these for new and progressed fractures at the same, adjacent and non-adjacent levels. Results: At 12 and 24 months, radiographs were available for 45 (58 %) and 47 (60 %) participants, respectively. There were no between-group differences for new or progressed fractures: 32 and 40 in the VP group after 12 and 24 months compared with 21 and 33 in the placebo group (hazard ratio (HR) 1.80, 95 % confidence interval (CI) 0.82 to 3.94). Similar results were seen when considering only adjacent (HR (95 % CI) 2.30 (0.57 to 9.29)) and non-adjacent (HR (95 % CI) 1.45 (0.55 to 3.81) levels. In all comparisons, there was a consistent trend towards higher risk of any type of fracture in the group undergoing VP. Within the VP group, fracture risk was unrelated to total (HR (95 % CI) 0.91 (0.71 to 1.17)) or relative (HR (95 % CI) 1.31 (0.15 to 11.48)) cement volume or cement leakage (HR (95 % CI) 1.20 (0.63 to 2.31)). Conclusion: For patients undergoing VP, our study did not demonstrate significant increases in subsequent fracture risk beyond that experienced by those with vertebral fractures who did not undergo the procedure. However, because of the non-significant numerical increases observed, studies with adequate power are needed to draw definite conclusions about fracture risk.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Traumatic injuries to the vertebral column, spinal cord, and cauda equina nerve roots occur frequently in human and veterinary medicine and lead to devastating consequences. Complications include partial or complete loss of motor, sensory, and visceral functions, which are among the main causes of euthanasia in dogs. The present case report describes neurological functional recovery in two dogs that were treated surgically for severe spinal fracture and vertebral luxation. In the first case, a stray, mixed breed puppy was diagnosed with thoracolumbar syndrome and Schiff-Scherrington posture, as well as a T13 caudal epiphyseal fracture with 100% luxation between vertebrae T13 and L1; despite these injuries, the animal did show deep pain sensation in the pelvic limbs. Decompression through hemilaminectomy and spinal stabilization with vertebral body pins and bone cement were performed, and the treatment was supplemented with physiotherapy and acupuncture. In the second case, a mixed breed dog was diagnosed with a vertebral fracture and severe luxation between L6 and L7 after a vehicular trauma, but maintained nociception and perineal reflex. Surgical stabilization of the spine was performed using a modified dorsal segmental fixation technique Both patients showed significant recovery of neurological function. Complete luxation of the spinal canal observed radiographically does not mean a poor prognosis, and in some cases, motor, sensory, and visceral functions all have the potential for recovery. In the first case the determining factor for good prognosis was the presence of deep pain perception, and in the second case the prognosis was determined by the presence of sensitivity and anal sphincter tone during the initial neurological examination.